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Abstract

Event cameras and LiDARs provide complementary yet dis-
tinct data: respectively, asynchronous detections of changes
in lighting versus sparse but accurate depth information at
a fixed rate. To this day, few works have explored the com-
bination of these two modalities. In this article, we propose
a novel neural-network-based method for fusing event and
LiDAR data in order to estimate dense depth maps. Our ar-
chitecture, DELTA, exploits the concepts of self- and cross-
attention to model the spatial and temporal relations within
and between the event and LiDAR data. Following a thor-
ough evaluation, we demonstrate that DELTA sets a new
state of the art in the event-based depth estimation prob-
lem, and that it is able to reduce the errors up to four times
for close ranges compared to the previous SOTA.

1. Introduction
Due to their unique nature, event cameras offer a large
paradigm change in the field of computer vision. By cap-
turing changes of lighting for each pixel independently and
asynchronously, and by transmitting this information as
spikes of data (events), these cameras provide ultra-low la-
tency perception (in the order of the microsecond). They
allow for novel applications and present an invaluable po-
tential, especially under challenging lighting or motion con-
ditions where traditional frame-based cameras would fail.

Their combination with other modalities like RGB or
grayscale cameras is a topic that has been deeply explored
over the past few years. Yet, the use of event cameras with
LiDARs remains relatively untouched, despite the valuable
information a depth sensor can bring for scene analysis. As
displayed in Fig. 1, we propose here to exploit both the pre-
cise edge detection and the high temporal resolution of the
event data to densify both spatially and temporally the Li-
DAR data, resulting in dense high-rate depth maps.

This article offers four key contributions. We propose
(1) a novel attention-based network, which we call DELTA
(for “Dense depth from Events and LiDAR using Trans-

+ =

Figure 1. Overall principle of DELTA. Sparse and low-rate pro-
jected LiDAR data (▪) is densified spatially and temporally using
higher-rate temporal windows of event data (▪), resulting in dense
high-rate depth maps (▪). Displayed here is an example of the
high-quality depth maps produced by DELTA.

former’s Attention”). DELTA combines information from
low-rate projected LiDAR point clouds with higher-rate
small temporal windows of events, in order to derive ac-
curate dense depth maps. Thanks to its attention- and
recurrence-based design, unlike traditional CNNs, our net-
work is able to extract the most relevant spatial and temporal
features within and between the event and LiDAR data. The
introduction of (2) a propagation memory for a fusion at the
highest input rate and of (3) a central memory acting as a
main recurrence both allow us to outperform the state of the
art, and are critical contributions as shown through ablation
studies. An extensive evaluation of DELTA is conducted
on multiple automotive datasets, where LiDAR and event
sensors are most commonly used together. We demonstrate
that in most cases our proposed network is able to offer (4) a
clear improvement over the state of the art, especially for
close ranges (often the most critical in dynamic scenes, e.g.,
close pedestrians in automotive scenarios), where the mean
error in depth estimation is reduced up to four times.

Additional analysis and results are available as supple-
mentary material. The source code and trained models are
available at https://vbrebion.github.io/DELTA.

2. Related Work

2.1. Transformers for Event-based Data

The Transformer [45] has become the state-of-the-art ar-
chitecture in numerous domains. Its attention mechanism

https://vbrebion.github.io/DELTA


models explicitly the relations between relevant elements in
a sequence, making it able to understand underlying struc-
tures. For computer vision, the arrival of the Vision Trans-
former (ViT) [12] has been a notable landmark, outperform-
ing more traditional convolution-based networks. As such,
researchers have started investigating how the Transformer
architecture could be adapted to event-based cameras. Two
philosophies have emerged over the years. (1) Some au-
thors use directly the raw stream of events (without any pre-
processing) as the input sequence to their network, and use
the Transformer architecture to process it. This approach is
particularly complex, as each event contains little informa-
tion, making the modeling of their relations difficult. To
contain enough context, sequences of events should also
be of consequent size. As of today, this method has only
been applied to the tasks of object detection and classi-
fication [23, 27, 32], where the event data can be highly
compressed. (2) To circumvent these issues, most authors
instead accumulate events in a frame-like representation,
and process it using the standard patch-based format pro-
posed with ViT. Investigated tasks include video reconstruc-
tion [48], object detection [17], classification [35, 36, 46],
depth estimation [36], and optical flow [43]. In this work,
we follow principle (2), as it allows the network to extract
meaningful spatial and temporal features from the event and
LiDAR data for the depth densification task.

2.2. Fusion of Event and LiDAR Data
To this day, most research works using both the LiDAR
and event-based modalities address the problem of extrinsic
calibration [9, 22, 40, 41], or use them as part of the con-
struction of a dataset [3, 5, 18, 49]. Recently, authors have
started investigating the issues of enhancing point clouds
with event-based data [26], of estimating dense depth maps
from event and LiDAR data [3, 10], or of tracking humans
in adversarial lighting conditions [37].

2.3. Event-Based Depth Estimation
The idea of estimating sparse or dense depth maps from
events has been actively explored over the past decade.
Three main approaches can be distinguished. (1) Some au-
thors estimate depths in a monocular fashion, using only
events from a single event camera [6, 21, 24, 29, 31, 33, 50],
or using events and frames [16, 20, 28, 36] from a DAVIS
camera [2]. These approaches are particularly challenging,
as they lack any three-dimensional information. (2) Some
authors have tried to estimate depth in a stereo fashion, by
using a pair of event cameras [7, 19, 30, 33, 38, 39], with [7]
and [33] achieving notably good results. (3) Finally, some
authors prefer to use directly a depth sensor, and use the
stream of event as a mean to densify and/or to temporally
upsample the depth data. This depth sensor can either be an
RGB-D camera [47] or a LiDAR [3, 10, 26], with [10, 26]

being based respectively on 3D- and 2D-geometry methods,
and with [3] (our previous work) being based on a CNN.

2.4. Positioning of our Work Compared to the State
of the Art

Like [3, 10, 26], we exploit LiDAR data to solve the prob-
lem of event-based depth estimation. Like these works,
we argue (and we show in Sec. 4) that having reference
depth points (even if sparse both spatially and temporally)
is of great help for solving the event-based depth estimation
problem. But unlike [10, 26], we do not use a geometry-
based approach, due to limitations highlighted by these two
works: depth estimation is only possible for areas with close
LiDAR points, output depth maps frequency is restricted to
the one of the LiDAR data, and these methods are sensi-
tive to noise. Our approach is more similar to our previous
work [3], as we use a learning-based approach to solve these
limitations. But while we used a convolution-based network
in [3], we propose here instead a novel attention-based net-
work, which can better capture the spatial and temporal re-
lations within and between event and LiDAR data, without
being restricted by the limited reception field of convolu-
tions. As shown in Sec. 4, this novel architecture greatly
outperforms the state of the art, especially for short ranges.

3. Method
3.1. A Single Depth Map
In [3], we argued (and still argue) that, as an event describes
a change between two illumination values, it may also be
linked to a change between two depth values, hence the
need of estimating a depth before the event happened (dbf)
and a depth after the event happened (daf). However, in [3],
the computation of the depths is not done at the event level,
but at the temporal window level. Therefore, we proposed
to estimate two depth maps for each temporal window of
events (Dbf and Daf), and to then use the events as a mask
to assign to each of them their two depths dbf and daf.

We argue here that this solution was ill-posed: multiple
events can be produced by a single pixel during a tempo-
ral window, with each of these events requiring their own
individual depths dbf and daf. Furthermore, at the temporal
window level, estimating two depth maps is redundant, as
the Daf depth map of a temporal window can be recovered
from the Dbf depth map of the following temporal window.

Since our objective here is not to estimate depths at the
event level but at the temporal window level, we follow
these conclusions and only estimate a single depth map for
each temporal window of events, i.e., the Dbf map.

3.2. Architecture
We propose a novel attention-based recurrent network to
estimate depth maps from LiDAR and event data, result-
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Figure 2. The complete architecture of our DELTA network. Unless noted, data is of shape (N,D), where N is the number of patches,
and D their dimensionality (please refer to Secs. 3.2 and 4.2 for more details).

ing from an iterative refinement. As illustrated in Fig. 2,
our DELTA network is based on a U-Net architecture [34],
with two input branches for frame-like representations of
the LiDAR and event data, a propagation memory, a central
memory state, and a decoding branch.

Encoding heads To be able to apply attention on them,
the event volumes and the projected LiDAR data (both of
shape (H,W,C), where C is the number of channels) are
first split into N small patches of size P × P , as originally
proposed by Dosovitskiy et al. [12]. This splitting is per-
formed through stacked convolutional layers, and results in
data of shape (N,D), where N is the number of patches,
and D is the dimensionality of each patch. As attention is
an order-independent operation, these encoded patches are
summed with a fixed 2-dimensional positional embedding,
following the formulation of Carion et al. [4]. This way,
each patch has its own unique signature, making the net-
work able to distinguish them.

Data encoding and fusion Event and LiDAR patches
each go through two self-attention modules, to encode their
own internal relations. A cross-attention module (CAF in

Fig. 2) is then used to encode the cross-relations between
the event and LiDAR patches, resulting in a single fused
representation. This step is crucial for ensuring the accurate
fusion of the two modalities, as shown in Sec. 4.6.

LiDAR propagation Due to the use of the cross-attention
module CAF, contrary to the models of [3, 16], the LiDAR
and event branches can not be totally decorrelated, as both
LiDAR and event data are necessary at each time step. On
the basis that event volumes are more frequently avail-
able than LiDAR point clouds , unless new LiDAR data
is available, we propagate at each time step the previous Li-
DAR data using the incoming event data . To do so, the
input events update a small (Sec. 4.2) propagation memory
via a cross-attention module (CAP1 in Fig. 2). This propaga-
tion memory is then used in a second cross-attention module
(CAP2), where the previous LiDAR data queries an update
from the propagation memory in order to produce an up-
dated LiDAR representation.

Memory update Considering the case where the event
camera and the LiDAR could be placed on a dynamic plat-
form (e.g., a road vehicle), then if that platform was to come



to a halt (e.g., at an intersection or in a traffic jam), few to no
event would be produced by the camera. As such, densify-
ing the LiDAR would become a difficult task, as the events
would not be able to provide any guiding information. To
solve this issue, given the sequential nature of the inputs,
we add a central memory. This way, even if the event cam-
era and LiDAR become static, the network can still exploit
the memory of the previous information from these sensors
to derive accurate predictions. This memory state also al-
lows for temporal smoothness of the output of the network
(as shown in Sec. 4.6), which is crucial given the high noise
in the event data. Regarding the implementation, the fused
LiDAR and event data are given to a Gated Recurrent Unit
(GRU) module [8], which updates this central memory.

Decoding To obtain the final depth map, the data from the
central memory passes through two self-attention modules,
each followed by a skip connection with the corresponding
summed and normalized LiDAR and event data from the
encoding branch. To obtain an image-like output, a final
decoding head regroups the decoded patches and reshapes
the data to its original size. This decoding head is com-
posed of stacked convex upsampling modules [42], where
the upsampling is guided by the corresponding data from
the events encoding head. Output is of shape (H,W, 1),
i.e., the same spatial resolution as the inputs.

3.3. Loss Functions
To train DELTA, two complementary losses are used: a
pixel-wise `1 loss L`1 , and a multiscale gradient-matching
loss Lmsg [44]. The role of L`1 is to ensure the correctness
of the depth prediction of all pixels compared to the ground
truth. However, an `1 loss alone tends to produce blurry pre-
dictions, so a second regulatory loss is required to produce
sharper depth maps. This is the role of Lmsg, which ensures
that the gradients of the predicted depth maps at different
scales are consistent with the ones of the ground truth depth
maps. We follow the formulation of [3] for Lmsg, with the
number of scales set to 5. Our final loss L is a sum of these
two losses over a sequence of length T :

L =

T−1∑
t=0

(Lt
`1 + Lt

msg). (1)

4. Evaluation
As a complement to this section, an additional ablation
study, an analysis on computational complexity, and addi-
tional visual results are all available as Suppl. Material.

4.1. Datasets
To conduct our evaluation, we use in this work three
datasets of the state of the art: the SLED dataset [3], the
MVSEC dataset [49], and the M3ED dataset [5].

Redefined set Recordings Total length

Train penno_small_loop_day; rittenhouse_day; 8m02s
penno_small_loop_night

Val horse_day; ucity_small_loop_night 8m59s

Test city_hall_day; city_hall_night 9m43s

Table 1. M3ED sets used within this work.

SLED The SLED dataset [3] is a synthetic dataset
recorded in 2023 using the CARLA simulator [11]. It
contains 20 minutes of perfectly synchronized and cali-
brated driving data, composed of high spatial definition
(1280×720) events and images, point clouds from a 40-
channel LiDAR at 10Hz with a maximum range of 200m,
and dense ground truth depth maps.

MVSEC The MVSEC dataset [49] was recorded in 2018.
It contains 30 minutes of long outdoor driving sequences,
with low spatial definition (346×260) events and images,
point clouds from a 16-channel LiDAR at 20Hz with a max-
imum range of 100m, and semi-dense ground truth depth
maps. However, the data is loosely synchronized, the cali-
bration is approximate, and the ground truth depth maps are
erroneous when there are moving objects in the scene. Yet,
it remains the most popular dataset for depth estimation in
the event community, making it an interesting benchmark.

M3ED The M3ED dataset [5] was recorded in 2023, and
acts as an informal successor to the MVSEC dataset. It is
composed (among others) of 110 minutes of outdoor driv-
ing sequences, with high spatial definition stereo events
(1280×720) and images (1280×800), point clouds from
a 64-channel LiDAR at 10Hz with a maximum range of
120m, and sparse ground truth depth maps. However, given
the size of the dataset, and since LiDAR data is not pro-
vided for the test set, we can not use it as is. To still be able
to provide insightful results, we subsampled the dataset and
redefined the train/val/test sets as described in Tab. 1.

DSEC We also tried initially to use the popular DSEC
dataset [18], but its ground truth depth maps are given at the
timestamps of the RGB frames (and are thus not synchro-
nized with the LiDAR point clouds)1, unfortunately mak-
ing them incompatible with the training and evaluation of a
LiDAR-and-event fusion method like ours.

4.2. Implementation Details
Data representation The event data is split in temporal
windows of fixed size ∆t = 50ms, based on the rate of the
ground truth of the three datasets in use. The events in each
window are accumulated into an Event Volume of shape

1https://github.com/uzh-rpg/DSEC/issues/7#issuecomment-1416776152
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(H,W, 4), following the formulation of Zhu et al. [50]. The
LiDAR point clouds are represented as their projection on
the event camera’s image plane. Pixels without any depth
value are set to 0. Both the LiDAR projections and ground
truth depth maps are normalized between 0.0 and 1.0, where
1.0 is the maximum LiDAR range in the dataset in use.

Data size The patch size P is set to 16 pixels for high-
resolution data (SLED and M3ED), and 12 pixels for low-
resolution (MVSEC) to better capture details. We use a
standard dimensionality of D = 1024. During training,
data is randomly cropped to a size of 512×512 pixels for the
high-resolution SLED and M3ED datasets, and to 252×252
pixels for the low-resolution MVSEC dataset.

Memories size and initialization Since the role of the
central memory is to condense past data, its shape must be
the same as the data itself, i.e., (N,D). On the contrary, the
propagation memory is only a parametric representation of
how the LiDAR data should be propagated to match the cur-
rent events. While its dimensionality is still constrained to
D, its number of elements N can be tuned: we empirically
chose a size of 128 in this work. As for their initialization,
the central memory is initialized with a copy of the two-
dimensional positional embedding, while the initial state of
the propagation memory is learned.

Training details For training on the three datasets, we use
the Adam optimizer [25] with batch size B = 4. When
training from scratch on the SLED and the M3ED datasets,
100 and 50 epochs are used respectively, the initial learn-
ing rate is set to 10−4, and it is decayed by 0.011/99 and
0.011/49 respectively after each epoch (in order to reach a
learning rate of 10−6 at the last epoch). When training from
scratch on the MVSEC dataset, 20 epochs are used, and the
learning rate is set to a constant value of 10−4. When fine-
tuning on MVSEC or M3ED, 5 epochs are used, and the
learning rate is set to a constant value of 10−5.

Evaluation metrics For all datasets, we use the mean ab-
solute depth error metric [3, 10, 16, 33, 36], but also the
standard depth estimation metrics of [13] (AbsRel, RMS,
RMSlog, δ1,2,3). Following the convention on the MVSEC
dataset [49], results are presented with five cutoff distances
(10m, 20m, 30m, half the maximum range, and the maxi-
mum range). DELTA is trained on the full depth maps, i.e.,
at the maximum range, and these cutoffs are only applied
at test time. For fairness of evaluation, comparisons with
ALED [3] are only made on its Dbf depth maps.

4.3. Results on the SLED Dataset
We begin by training DELTA solely on the SLED dataset,
and denote this version DELTASL. Results of DELTASL on

(a)

Ground truth ALEDSL [3] result DELTASL result

(b)

ALEDSL [3] error map DELTASL error map

(c)

Ground truth ALEDSL [3] result DELTASL result

(d)

ALEDSL [3] error map DELTASL error map

Figure 3. Results on the Town01_08 ((a), (b)) and Town03_19
((c), (d)) sequences of SLED. Rows (a) and (c), left to right: ground
truth depth map; result from ALEDSL; our result (DELTASL). Dif-
ferences between ALEDSL and DELTASL are better seen in rows
(b) and (d), showing the error maps of ALEDSL and DELTASL

(where pixels with an error inferior to 0.5m are in gray). For a
better visualization, an enlarged version of this figure is given in
the Supplementary Material.

the testing set of SLED are given in Tab. 2. Compared to
the state-of-the-art results of ALEDSL [3] (also trained only
on SLED, noted ALEDS in [3]), a clear improvement can be
seen across all metrics. Improvement is particularly impor-
tant for nearby objects, as the mean depth error at the 10m
cutoff is divided nearly by 2 and by 4 for the Town01 and
Town03 maps respectively. Improvement is less signifi-
cant at longer ranges, but we argue that close surroundings
of the vehicle are of much more importance when driving
than distant objects.

Visual results are presented in Fig. 3. Looking at the
predicted depth maps (rows (a) and (c)), our network is able
to infer very accurate results, visually close to the ground
truth. Looking at the error maps (rows (b) and (d)), they
confirm the observations made on the quantitative results:
we commit very small errors at close ranges (especially for
the ground) and larger errors at longer ranges, while ALED
commits medium to large errors over the whole depth map.
These results also highlight that, despite a lack of LiDAR
data for the road just in front of the vehicle (at the very
bottom of the images), our network can accurately esti-
mate depth for these areas thanks to its attention-based de-
sign, which can correlate all the patches of event and Li-
DAR data (compared to the convolutional-based design of
ALED, which only operates on limited neighborhoods, and
thus does not achieve good results for these areas).



Map Cutoff
ALEDSL [3] DELTASL

Mean↓ AbsRel↓ RMS↓ RMSlog↓ δ1↑ δ2↑ δ3↑ Mean↓ AbsRel↓ RMS↓ RMSlog↓ δ1↑ δ2↑ δ3↑

Town01

10m 1.24 0.211 8.022 0.478 0.890 0.962 0.978 0.66 0.106 6.981 0.282 0.963 0.981 0.989
20m 2.10 0.232 11.973 0.489 0.885 0.952 0.970 1.33 0.133 10.601 0.311 0.948 0.973 0.983
30m 2.74 0.239 13.831 0.481 0.875 0.945 0.966 1.91 0.147 12.437 0.317 0.932 0.965 0.979
100m 4.26 0.241 17.182 0.468 0.860 0.935 0.959 3.22 0.157 15.177 0.317 0.909 0.954 0.973
200m 4.53 0.173 18.775 0.405 0.892 0.947 0.966 4.54 0.119 19.606 0.311 0.921 0.957 0.973

Town03

10m 2.01 0.290 14.900 0.456 0.904 0.952 0.966 0.54 0.082 5.656 0.184 0.958 0.973 0.986
20m 2.87 0.301 17.134 0.516 0.883 0.939 0.961 1.31 0.117 9.958 0.234 0.934 0.962 0.980
30m 3.35 0.292 17.706 0.507 0.874 0.935 0.959 1.93 0.133 11.831 0.251 0.919 0.952 0.974
100m 4.62 0.275 18.840 0.484 0.860 0.928 0.955 3.40 0.146 15.119 0.265 0.897 0.941 0.968
200m 4.87 0.216 20.059 0.438 0.882 0.937 0.960 4.63 0.122 19.363 0.271 0.906 0.944 0.967

Table 2. Error metrics of ALEDSL [3] and of DELTASL on the SLED dataset for various cutoff depth distances. Best results are in bold.

4.4. Results on the MVSEC Dataset
For the MVSEC dataset, we propose two variants:
• DELTAMV, only trained on MVSEC;
• DELTASL→MV, after finetuning DELTASL on MVSEC.
The results of both versions are given in Tabs. 3 and 4, in
addition to the results of other methods of the state of the
art. Compared to the results of all other methods (except
ALED [3]), our method yields consistently lower errors,
especially after pre-training on the SLED dataset. Com-
pared to ALEDMV (only trained on MVSEC, noted ALEDR
in [3]), DELTAMV offers a significant improvement, simi-
lar to the one observed on the SLED dataset in Sec. 4.3.
Compared to ALEDSL→MV (pre-trained on SLED and fine-
tuned on MVSEC, noted ALEDS→R in [3]), DELTASL→MV
also offers an improvement for close ranges, and remains
close for more distant ranges. Comparing DELTAMV and
DELTASL→MV reveals however that the finetuning is not as
efficient as between ALEDSL and ALEDSL→MV, with the
mean depth error only improving slightly in our case. We
believe this is due to the large change of resolution be-
tween the SLED and MVSEC datasets, which is a well-
documented issue with attention-based vision models [14],
and which requires in our case a change in patch size and
a redefinition of the positional encoding. This makes the
finetuning naturally more complex for an attention-based
network than for a purely convolutional one. Additionally,
as showcased in Fig. 4, fewer ground truth points are avail-
able for the close ranges (where our method performs best),
skewing the results in favor of ALED (which has more dif-
ficulties for close objects, as shown previously in Sec. 4.3).

Visual results are also presented in Fig. 4, comparing
them with those of Cui et al. [10] and of ALEDSL→MV [3].
While the method of Cui et al. allows for a good sharp-
ness in the image, it fails at producing smooth depth gra-
dients (especially on the ground, where the delimitations
between LiDAR scans are clearly visible), and it is lim-
ited to the vertical range of the LiDAR sensor. Compar-
ing our results to those of ALEDSL→MV, the visualizations
reflect the observations made during the quantitative eval-
uation: our depth maps have a very good accuracy, but

Recording Cutoff
Events (stereo) Events & Frames Events & LiDAR

StereoSpike RAMNet EvT+ Cui et al. ALEDMV DELTAMV
ALEDSL→MV DELTASL→MV[33] [16] [36] [10] [3] [3]

outdoor_day_1

10m 0.79 1.39 1.24 1.24 0.91 0.51 0.50 0.50
20m 1.47 2.17 1.91 1.28 1.22 0.86 0.80 0.81
30m 1.92 2.76 2.36 4.87 1.43 1.10 1.02 1.06
50m - - - - 1.67 1.42 1.31 1.41

100m 3.17 - - - 1.96 1.73 1.60 1.80

outdoor_night_1

10m 1.38 2.50 1.45 2.26 1.75 1.55 1.52 1.52
20m 2.26 3.19 2.10 2.19 2.10 1.94 1.81 1.92
30m 2.97 3.82 2.88 4.50 2.25 2.14 1.95 2.16
50m - - - - 2.44 2.42 2.20 2.46

100m 4.82 - - - 2.73 2.78 2.54 2.88

outdoor_night_2

10m - 1.21 1.48 1.88 1.19 1.16 1.09 0.99
20m - 2.31 2.13 2.14 1.65 1.59 1.49 1.49
30m - 3.28 2.90 4.67 1.81 1.77 1.64 1.75
50m - - - - 1.95 1.95 1.80 1.98

100m - - - - 2.11 2.16 1.97 2.23

outdoor_night_3

10m - 1.01 1.38 1.78 0.85 0.92 0.81 0.74
20m - 2.34 2.03 1.93 1.25 1.35 1.16 1.26
30m - 3.43 2.77 4.55 1.42 1.57 1.33 1.56
50m - - - - 1.57 1.78 1.51 1.83

100m - - - - 1.73 1.96 1.66 2.09

Table 3. Mean depth errors (in meters) on the MVSEC dataset for
various cutoff depth distances.

Recording Metric
Events & Frames Events & LiDAR

RAMNet HMNet PCDepth ALEDMV DELTAMV
ALEDSL→MV DELTASL→MV[16] [20] [28] [3] [3]

outdoor_day_1

AbsRel↓ 0.303 0.230 0.228 0.185 0.118 0.114 0.121
RMS↓ 8.526 6.922 6.526 4.947 4.793 4.574 4.910

RMSlog↓ 0.424 0.310 0.301 0.259 0.215 0.200 0.236
δ1↑ 0.541 0.717 0.712 0.834 0.890 0.895 0.866
δ2↑ 0.778 0.868 0.867 0.937 0.953 0.958 0.954
δ3↑ 0.877 0.940 0.941 0.970 0.977 0.980 0.980

outdoor_night_1

AbsRel↓ 0.583 0.349 0.271 0.310 0.288 0.274 0.289
RMS↓ 13.340 10.818 6.715 6.122 5.779 5.791 6.042

RMSlog↓ 0.830 0.543 0.354 0.378 0.360 0.360 0.372
δ1↑ 0.296 0.497 0.632 0.753 0.752 0.767 0.726
δ2↑ 0.502 0.661 0.822 0.861 0.866 0.870 0.853
δ3↑ 0.635 0.784 0.922 0.916 0.925 0.922 0.917

outdoor_night_2

AbsRel↓ - - - 0.198 0.195 0.183 0.184
RMS↓ - - - 4.739 4.636 4.543 4.870

RMSlog↓ - - - 0.282 0.281 0.274 0.281
δ1↑ - - - 0.802 0.809 0.817 0.785
δ2↑ - - - 0.911 0.913 0.916 0.909
δ3↑ - - - 0.958 0.959 0.960 0.959

outdoor_night_3

AbsRel↓ - - - 0.142 0.155 0.133 0.145
RMS↓ - - - 3.861 4.053 3.726 4.514

RMSlog↓ - - - 0.225 0.239 0.221 0.243
δ1↑ - - - 0.839 0.831 0.849 0.803
δ2↑ - - - 0.934 0.929 0.937 0.921
δ3↑ - - - 0.973 0.969 0.973 0.968

Table 4. Other error metrics on the MVSEC dataset (with the
100m cutoff).

those of DELTASL→MV are slightly less sharp than those of
ALEDSL→MV, while those of DELTAMV are much sharper
but contain some small defects due to only learning on
MVSEC (which contains erroneous ground truth values, as
noted in Sec. 4.1). Like all other methods showcasing re-
sults on MVSEC [3, 16, 20], the lack of ground truth data
for the sky leads to blue blobs in the upper areas of all pre-
dictions.
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Figure 4. Qualitative results on the MVSEC dataset. Left to right: events; LiDAR projection (with larger points for a better readability);
ground truth; results from Cui et al. [10]; results from ALED [3]; our results. Top to bottom: outdoor_day_1; outdoor_night_1;
outdoor_night_2. For a better visualization, an enlarged version of this figure is given in the Supplementary Material.

4.5. Results on the M3ED Dataset
We propose two variants of DELTA on the M3ED dataset:
• DELTAM3, only trained on M3ED;
• DELTASL→M3, after finetuning DELTASL on M3ED.

Results are given in Tab. 5, compared with those of
ALED [3]. Again, DELTA performs very well on both se-
quences, with the mean error at the full cutoff distance being
close to and lower than 1m for city_hall_day, and even
lower for city_hall_night. This constitutes a significant
improvement over ALED, as its mean error is always well
over 1m for both recordings. Results on the other metrics
also favor DELTA, although in a more even way. However,
for both ALED and DELTA, pretraining on SLED brings
little to no improvement. This apparent discrepancy can be
explained through Fig. 5: the ground truth depth maps of
M3ED are very sparse, with a similar density than the one
of the LiDAR input, and with very few ground truth values
at the edges of the objects. Because of these limitations,
both ALED and DELTA showcase depth maps with accu-
rate depth estimations, but give a blob-like appearance to
all the objects as they could not learn the notion of edges
from the training set. Pretraining on SLED allows for a bet-
ter identification of these edges, producing sharper depth
images, but it also leads to the appearance of artifacts (e.g.,
on the streetlamp on the left side in Fig. 5).

Therefore, while M3ED remains a dataset of interest in
the event-based community, we believe that it may not be
the best suited for the training and/or evaluation of an event-
and-LiDAR dense depth estimation method like ours.

4.6. Ablation Studies
In this final subsection, we investigate the importance of
the two memories in the network, the role of the central
cross-attention module CAF, and the information provided

Recording Method Mean↓ AbsRel↓ RMS↓ RMSlog↓ δ1↑ δ2↑ δ3↑

city_hall_day

ALEDM3 [3] 1.41 0.074 2.867 0.120 0.958 0.986 0.995
DELTAM3 1.03 0.054 2.769 0.120 0.953 0.985 0.994

ALEDSL→M3 [3] 1.31 0.090 2.616 0.128 0.962 0.987 0.995
DELTASL→M3 0.89 0.055 2.258 0.113 0.968 0.989 0.995

city_hall_night

ALEDM3 [3] 1.41 0.068 2.499 0.102 0.976 0.992 0.997
DELTAM3 0.82 0.042 2.318 0.099 0.969 0.990 0.996

ALEDSL→M3 [3] 1.28 0.085 2.398 0.117 0.971 0.990 0.996
DELTASL→M3 0.85 0.048 2.243 0.103 0.974 0.990 0.995

Table 5. Errors of ALED [3] and DELTA on M3ED, without and
with pretraining on SLED (with the maximum 120m cutoff). Re-
sults of ALED on M3ED were computed for this article.

by each of the input modalities. For that purpose, we pro-
pose five variants of DELTA:
• DELTANPM, with no propagation memory;
• DELTANCM, with no central memory;
• DELTANCA, with no central cross-attention module (re-

placed by a GRU module for each encoding branch to
update the central memory);

• DELTANL, with no LiDAR input;
• DELTANE, with no event input.
We give an overview of the structure of these modified net-
works in the Suppl. Material. For the evaluation, as was
done for Sec. 4.3, we trained these variants of DELTA on the
SLED dataset, allowing for comparison with the proposed
version of the network. The choice of doing this analysis
on SLED was motivated by the fact that both the MVSEC
and the M3ED datasets suffer from shortcomings in their re-
spective ground truth, which could alter this ablation study.

Results for the first three variants are presented in Tab. 6.
As can be seen, (1) the base variant DELTASL produces the
best results, except for the maximum 200m cutoff range,
where it is only slightly beaten by the DELTASL

NCM variant.
(2) The version without a propagation memory DELTASL

NPM

has constantly an additional error of around 0.2m to 0.4m,
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Figure 5. Qualitative results for the city_hall_day sequence from M3ED. The size of points was increased for both the LiDAR
projection and the ground truth. For a better visualization, an enlarged version of this figure is given in the Supplementary Material.

Cutoff DELTASL DELTASL
NPM DELTASL

NCM DELTASL
NCA

10m 0.60 0.85 (+0.25) 0.91 (+0.31) 0.95 (+0.35)
20m 1.32 1.64 (+0.32) 1.71 (+0.39) 1.80 (+0.48)
30m 1.92 2.24 (+0.32) 2.21 (+0.29) 2.40 (+0.48)

100m 3.32 3.73 (+0.41) 3.53 (+0.21) 3.85 (+0.53)
200m 4.58 5.01 (+0.43) 4.49 (−0.09) 5.03 (+0.45)

Table 6. Absolute and relative mean depth errors (in meters) on
the full testing set of SLED, for alternative versions of DELTA (No
Propagation Memory, No Central Memory, No Cross-Attention).

highlighting the importance of temporally propagating the
LiDAR data with the events. (3) The version without the
central memory DELTASL

NCM also performs worse, albeit
with an additional error that diminishes the greater the cut-
off distance is, beating DELTASL by 0.09m at the maxi-
mum cutoff range. It should be noted however that the
car which the sensors are mounted on in the SLED dataset
rarely stops, and if it does, it is for very short periods of
time. As explained in Sec. 3.2, since the main role of the
central memory is to help provide accurate results in these
cases, it only serves here its secondary role of being a stabi-
lization medium, which is still valuable given the numerical
results. (4) The version without the central cross-attention
module DELTASL

NCA is the worst performing variant, as it
has the largest error across all cutoff ranges. As such, the
central cross-attention module CAF is crucial for encoding
the cross-relations between the encoded LiDAR and event
data before updating the central memory.

Finally, results for the DELTANL and DELTANE variants
are given in Fig. 6. They highlight the complementarity of
the two inputs: the events help identify the edges of the ob-
jects but not their depth (DELTANL), while the LiDAR helps
identify the depth but not the edges of the objects, especially
those above or under its narrow vertical FOV (DELTANE).

5. Conclusion and Discussions

In this article, a new attention-based network for fusing pro-
jected LiDAR data and temporal windows of events to con-
struct dense depth maps was presented. Thanks to the intro-
duction of a propagation memory between cross-attentions,
DELTA is able to extrapolate LiDAR with events at higher
rate for an optimal fusion. A GRU is also added between
the encoding and decoding stages, allowing for a short-term
central memory and more robust outputs. A thorough eval-

Ground truth DELTASL

DELTASL
NL DELTASL

NE

Figure 6. Qualitative results for the DELTANL and DELTANE vari-
ants, on the Town01_19 sequence of SLED.

uation including ablation studies was conducted on three
datasets of the state of the art to demonstrate the relevance
of these propositions. On the synthetic SLED dataset, large
improvements are achieved, with for instance the mean er-
ror being reduced up to four times for short ranges when
compared to the state of the art. On MVSEC and M3ED,
despite limitations in the ground truth data of these datasets,
DELTA remains very competitive, being close to or achiev-
ing the state of the art, with low errors across all cutoff
ranges. We believe in particular that our new state-of-the-
art architecture can serve as a basis for other applications or
for fusion with other sensors.

In hindsight, some modifications could still be brought
to this work in order to further improve its overall perfor-
mance. (1) As shown throughout this article, the reduction
of errors over short ranges is sometimes done at the cost
of lower precision at longer ranges. Adapting our training
procedure by introducing variable weights for every cut-
off distance could be a solution to make sure all of them
are optimized equally. (2) We chose to use the event vol-
ume [50], as it is a standard, compact, and high-performing
representation of event data. While it allows DELTA to
achieve very accurate results, this representation can lead
to some information being lost in case of very fast mo-
tion. Novel representations [1, 15, 51] could be examined
for these cases. (3) Finally, projecting the LiDAR data al-
lows for a pixel-wise fusion with the event data, but makes
the three-dimensional structure of the point cloud disappear.
Working directly in 3D like [10] could therefore constitute
an interesting research opportunity.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In Con-
ference on Empirical Methods in Natural Language Process-
ing, 2014. 4

[9] Mathieu Cocheteux, Julien Moreau, and Franck Davoine.
MULi-Ev: Maintaining unperturbed LiDAR-event calibra-
tion. CVPRW, pages 4579–4586, 2024. 2

[10] Mingyue Cui, Yuzhang Zhu, Yechang Liu, Yun-Meng Liu,
Gang Chen, and Kai Huang. Dense depth-map estima-
tion based on fusion of event camera and sparse LiDAR.
IEEE Transactions on Instrumentation and Measurement,
71:1–11, 2022. 2, 5, 6, 7, 8, 1, 4

[11] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio
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6. Enlarged Views of the Results on SLED,
MVSEC, and M3ED

As described in the main article, an enlarged version of
Fig. 3 is given in Fig. 7 (this version also includes the in-
put LiDAR and event data), an enlarged version of Fig. 4 is
given in Fig. 8, and an enlarged version of Fig. 5 is given in
Fig. 9.

7. Alternative Versions of DELTA
Alternative versions of our DELTA network are given in
Figs. 10 to 15. Versions of the network illustrated in Figs. 10
to 14 are used as part of the ablation study in Sec. 4.6 of the
main article, while the version illustrated in Fig. 15 is used
as part of Sec. 8 of this Supplementary Material.

8. Ablation Study on Encoding Heads
In addition to the ablation studies conducted in the main ar-
ticle, we propose here an additional variant of the network,
DELTANEH, showcased in Fig. 15. Here, the convolutional
encoding heads are replaced by a more direct splitting into
patches, as originally done in the Vision Transformer [12].
To compensate for the reduced number of parameters in the
network, we add a third layer of self-attention modules. At
the end of the decoding, the patches are simply grouped
back to an image-based format, and a final small convolu-
tional head reduces the number of channels and smooths the
resulting depth maps.

Results of DELTANEH on the SLED dataset are shown in
Tab. 7. As can be seen, DELTASL

NEH does not perform well at
all, even worse than all the variants showcased in the main
article. As visually illustrated in Fig. 16, DELTASL

NEH pro-
duces depth maps with large errors (especially for the tun-
nel in the bottom row), and where the junction between the
patches remains visible, creating numerous artifacts. While
a simple splitting into patches can be conducted for the Vi-
sion Transformer, as classification is the end task, here we
require a dense reconstruction at the end, i.e., we need to
keep information about the structure of the scene. There-
fore, in our case, computing the patches using a convolu-
tional head allows for a better re-grouping of the patches at
the end of the network, by allowing the decoding head to be
guided by the corresponding data from the encoding head
through our use of the convex upsampling module of [42].

9. Computational Complexity
We report in Tab. 8 several metrics of the computational
complexity of DELTA, computed on a single NVIDIA L40

Map Cutoff DELTASL DELTASL
NEH

Town01

10m 0.66 1.58 (+0.92)
20m 1.33 2.89 (+1.56)
30m 1.91 3.90 (+1.99)

100m 3.22 6.73 (+3.51)
200m 4.54 9.85 (+5.41)

Town03

10m 0.54 2.13 (+1.59)
20m 1.31 3.17 (+1.86)
30m 1.93 3.89 (+1.96)

100m 3.40 6.14 (+2.74)
200m 4.63 9.23 (+4.60)

Table 7. Absolute and relative mean depth errors (in meters) on
the SLED dataset, for the base version of DELTA and the “No
Encoding Head” variant shown in Fig. 15.

GPU. For high- (1280×720), mid- (640×480), and low-
resolution (346×260) data, DELTA has a mean inference
rate of 6.3Hz, 20.5Hz, and 47.8Hz respectively. Compared
to the method of Cui et al. [10] with its reported output rate
of 56Hz on the MVSEC dataset, our method is only 1.17
times slower, but for a much better accuracy as shown in
Tab. 3 of the main article. Compared to ALED, despite the
significant increase in the number of parameters due to the
use of attention modules, DELTA requires a similar amount
of FLOPS and of GPU memory, allowing its deployment on
standard consumer-grade GPUs. Inference times of ALED
are of course smaller, and while we can not exactly call our
method real-time, we want to remind the reader here that the
focus of our work was set on accuracy rather on real-time
compatibility. As such, inference time and/or memory us-
age could be further reduced, as we are not using advanced
optimizations like torch.compile(), and as we believe
the DELTA architecture could be slightly revised to reduce
its number of parameters while keeping a similar accuracy.
Implementation on specialized hardware could also be con-
sidered for real-time robotic applications, but is beyond the
scope of this work.

10. Additional Visual Results on the SLED
Dataset

Additional qualitative results on the SLED dataset are given
in Figs. 17 to 20. We showcase in Figs. 17 and 18 scenes
with accurate estimations, but also some small and larger
failure cases in Figs. 19 and 20.



Model Resolution (with padding) Dataset(s) Patch size Nb. param. FLOPS Inference time Max. GPU mem.

DELTA
1280 × 720 SLED, M3ED 16 180.9M 1786.1B 157.9ms ± 2.0ms 10.64 GB
640 × 480 DSEC 16 180.9M 596.4B 48.7ms ± 0.4ms 4.68 GB
346 × 260 (348 × 264) MVSEC 12 181.2M 300.4B 20.9ms ± 0.2ms 3.09 GB

ALED
1280 × 720 SLED, M3ED / 26.2M 1546.0B 91.2ms ± 16.8ms 7.02 GB
640 × 480 DSEC / 26.2M 515.3B 26.9ms ± 5.0ms 2.74 GB
346 × 260 (352 × 264) MVSEC / 26.2M 155.9B 7.5ms ± 1.4ms 1.36 GB

Table 8. Computational complexity metrics (number of parameters, FLOPS, mean inference time, maximum GPU memory usage) for
DELTA and ALED, for both high-, mid-, and low-resolution data.

11. Additional Visual Results on the MVSEC
Dataset

Additional qualitative results on the MVSEC dataset are
given in Fig. 21, showing the quality of the results for both
day and night scenes despite the sparse and low-resolution
input event and LiDAR data.

12. Additional Visual Results on the M3ED
Dataset

Additional qualitative results on the M3ED dataset are
given in Figs. 22 and 23, where the sparsity of the ground
truth depth maps (especially compared to the density of the
LiDAR data) and the blob-like appearance of the objects in
the predictions can be better observed.
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Figure 7. Comparison on the Town01_08 (top) and Town03_19 (bottom) sequences of SLED (enlarged version of Fig. 3).
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Figure 8. Comparison on the outdoor_day_1, outdoor_night_1, and outdoor_night_2 sequences of MVSEC (enlarged
version of Fig. 4).
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Figure 9. Comparison on the city_hall_day sequence of M3ED (enlarged version of Fig. 5).
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Figure 10. The alternative architecture without propagation memory, DELTANPM.
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Figure 11. The alternative architecture without central memory, DELTANCM.
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Figure 12. The alternative architecture without the central cross-attention, DELTANCA.
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Figure 13. The alternative architecture without the LiDAR input, DELTANL.
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Figure 14. The alternative architecture without the event input, DELTANE.
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Figure 15. The alternative architecture where the convolutional encoding heads are replaced by a simple splitting into patches, DELTANEH.
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Figure 16. Results on the Town01_08 (top) and Town03_19 (bottom) sequences of SLED, for DELTASL and DELTASL
NEH. Zoom on the

numerical version may be required to better see the individual patches and artifacts for DELTASL
NEH.



Figure 17. Additional results on the SLED dataset, on sequences Town01_03 and Town01_05. From top to bottom: events, LiDAR
projection, ground truth, our results.



Figure 18. Additional results on the SLED dataset, on sequences Town01_18 and Town03_02. From top to bottom: events, LiDAR
projection, ground truth, our results.



Figure 19. Additional results on the SLED dataset, on sequences Town03_06 and Town03_13. From top to bottom: events, LiDAR
projection, ground truth, our results. Shown here are two cases where DELTASL displays moderate to large errors for objects in the upper
part of the depth maps (where no LiDAR data is available), like the building on the top left for the left column, and the suspended railway
on the top for the right column.



Figure 20. Additional results on the SLED dataset, on sequences Town01_08 and Town01_11. From top to bottom: events, LiDAR
projection, ground truth, our results. Shown here are two failure cases where DELTASL displays large errors. Left: due to a high-speed
sharp turn, a very high quantity of events is produced in the time window of accumulation, leading to information being lost in the event
volume, and thus leading to an inaccurate depth estimation for background objects. Right: due to the limitations of the event camera in
the CARLA simulator, dark objects in a night scene like the trees in the middle and on the right of the scene are not captured in the event
stream of the SLED dataset, resulting in blurry depth estimations for these objects.



Figure 21. Additional results on the MVSEC dataset. Sequences shown, from left to right: outdoor_day_1; outdoor_night_1;
outdoor_night_2; outdoor_night_3. From top to bottom: reference image of the scene; events; LiDAR projection (with size of
points increased for a better visibility); ground truth; our results (DELTAMV, DELTASL→MV).



Figure 22. Additional results on the M3ED dataset, for the city_hall_day sequence. From top to bottom: events, LiDAR projection,
ground truth, our results (DELTAM3, DELTASL→M3).



Figure 23. Additional results on the M3ED dataset, for the city_hall_night sequence. From top to bottom: events, LiDAR projection,
ground truth, our results (DELTAM3, DELTASL→M3).


	Introduction
	Related Work
	Transformers for Event-based Data
	Fusion of Event and LiDAR Data
	Event-Based Depth Estimation
	Positioning of our Work Compared to the State of the Art

	Method
	A Single Depth Map
	Architecture
	Loss Functions

	Evaluation
	Datasets
	Implementation Details
	Results on the SLED Dataset
	Results on the MVSEC Dataset
	Results on the M3ED Dataset
	Ablation Studies

	Conclusion and Discussions
	Enlarged Views of the Results on SLED, MVSEC, and M3ED
	Alternative Versions of DELTA
	Ablation Study on Encoding Heads
	Computational Complexity
	Additional Visual Results on the SLED Dataset
	Additional Visual Results on the MVSEC Dataset
	Additional Visual Results on the M3ED Dataset

